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Abstract

This paper treats the vibration of slender suspension footbridges caused by eccentrically distributed walking dynamic

loads. A suspension footbridge model with reverse profiled cables in both the vertical and horizontal planes was used in

this conceptual study, while SAP2000 package is adopted in the numerical analysis. The dynamic behaviour of slender

footbridges under walking dynamic loads is simulated by resonant vibration caused by synchronous excitations. It is found

that slender suspension footbridges with shallow cable profiles often have coupled vibration modes such as coupled

lateral–torsional or coupled torsional–lateral modes. When these coupled vibration modes are excited by walking

pedestrians, excessive lateral vibration can be induced. Results also show that the effects of the reverse profiled cables on

the dynamic performance in different vibration modes are complex. Reverse profiled cables in the horizontal plane can

significantly suppress the lateral vibration in coupled lateral–torsional modes, but slightly increase the lateral vibration in

coupled torsional–lateral modes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

With the emergence of new materials and advanced engineering technology, modern footbridges can be
designed and constructed to have longer spans and greater slenderness than ever to satisfy the transportation
needs and the aesthetical requirements of society. Such slender footbridges have often low stiffness, low mass,
low damping and are prone to vibration induced by human activities. The decreasing of mass and stiffness in
footbridge structures leads to low natural frequencies for footbridges with greater danger of resonance [1] and
larger lateral dynamic response [2]. Severe vibration serviceability problems can arise, particularly in the
lateral direction as pedestrians are more sensitive to the low-frequency lateral vibration than the vertical one
[3]. This phenomenon has been evidenced by the excessive lateral vibrations of many footbridges worldwide
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Austd steady dynamic amplitude of lateral
deflection

[C] damping matrix
DAF dynamic amplification factor
DAFustd dynamic amplification factor of steady

lateral deflection
D1, D2, D3 diameters of top, bottom and side

cables
fn pacing frequency of normal walk
Fn[t] force function of normal walk
Fnl(t) continuous lateral force function
Fnv(t) continuous vertical force function
fp pacing frequency of walking load
F1, F2, F3 cable sags of top, bottom and side

cables
k integer number
[K] stiffness matrix
L span length
L lateral vibration mode
LmTn coupled lateral–torsional modes
m, n number of half-wave
M mass density

[M] diagonal mass matrix
Mustd mean value of lateral deflection
qnv (t) vertical dynamic force
qnl (t) lateral dynamic force
qsv (t) vertical ramped static force
{R} vector of applied loads
t time
T torsional vibration modes
Tn period of normal walk
Tnc contact time
Tp period of walking load
TmLn coupled torsional–lateral modes
T1, T2, T3 tension forces in top, bottom and side

cables
Ul, Uv lateral and vertical deflections
Ustdmax maximum steady dynamic deflection
Ustdmin minimum steady dynamic deflection
Ustatic static deflection
{U} vector of dynamic displacements
f _Ug vector of dynamic velocities
f €Ug vector of dynamic accelerations
Vm vertical modes
a time factor
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such as Millennium Bridge in London [4], T-Bridge in Japan [5], etc. It is generally accepted nowadays that
modern slender footbridges have greater danger of suffering vibration serviceability problems rather than
safety or strength problems [6].

In general, lateral deflection is considered as a response to lateral loads. However, vertical loads can also
induce lateral deflections, particularly in slender structures such as frames and long bridges. This is because
structures are three-dimensional (3D) and deflections in all orthogonal directions are often coupled [7]. This
always occurs when vertical loads act on asymmetric structures or asymmetrically (eccentrically) distributed
vertical loads act on symmetric structures. It is also reported that horizontal movements of some railway
bridges in China have been observed due to the increasing speed of trains [8]. As there are often two or more
rail tracks on a bridge, the loading from one train is effectively asymmetrical on the structure and hence lateral
movements are generated [7]. For slender suspension footbridges, it is found that large lateral deflection can be
induced by eccentric vertical loads [9]. This situation could be worse when lateral vibration is caused when
pedestrians walk eccentrically across a slender footbridge, as large lateral vibration can easily trigger
synchronous lateral excitation.

A conceptual study is undertaken to comprehensively investigate the dynamic characteristics of slender
footbridges with shallow cable profiles under human-induced dynamic loads. A slender suspension footbridge
model with pre-tensioned reverse profiled cables in vertical plane as well as in horizontal plane is proposed for
this purpose. This paper concerns the vibration, particularly in the lateral direction, induced by eccentric
walking dynamic loads when pedestrians walk across the footbridge at different pacing frequencies. Three
types of bridge models with different cable configurations are considered to investigate the effect of cable
configuration. In the numerical analysis, the structural analysis software package SAP2000 [10] is adopted for
the non-linear direct-integration time history analysis. The research finding is helpful to understand the
dynamic behaviour of slender suspension footbridges with shallow cable profiles under human-induced
dynamic loads.
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2. Suspension footbridges with reverse profiled cables

2.1. Proposed suspension footbridge model

The proposed suspension footbridge model is shown in Fig. 1. In this bridge model, the cable system is
composed of three groups of cables which may have same or different cable profiles: top supporting cables,
bottom reverse profiled cables (Fig. 1(a)) and side bi-concave cables (Fig. 1(b)). The top cables are two parallel
suspending cables which have catenary profiles and provide tension forces to support the structural gravity
loads, applied loads and extra internal forces induced by the bottom cables. Two parallel bottom cables are
designed to have reverse profiles in the vertical plane and their function is to provide extra internal vertical
forces to transverse bridge frames and the top supporting cables. The side cables are a pair of bi-concave
cables which have the same cable profiles in the horizontal plane, and their main function is to provide extra
internal horizontal forces and horizontal stiffness. When the bottom and/or side cables are slack, they could
carry small tension forces only to support their own gravity loads and cannot resist any external loads. In this
case, they will not be able to contribute stiffness and tension forces to the structure. However, these small
tensions can provide sufficient restraining forces to prevent the transverse frames from swaying in the
longitudinal direction.

Transverse bridge frames are designed to support the deck and hold the cables. These frames (Fig. 1(c))
comprise cross members (for the support beams and deck), top and bottom vertical legs as well as horizontal
side legs and they form a set of spreaders for the cables to create the required profiles. They have in-plane
stiffness to protect against collapse under in-plane forces and contribute very little in the way of longitudinal,
lateral and rotational stiffness for the entire system. The transverse bridge frames are hung from the top
cables, and further restrained by the lower reversed profile cables as well as the side cables. Two support beams
of rectangular section are simply supported on cross members of the adjacent bridge frames, and the deck
units are simply supported at the ends on these beams.
b
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Fig. 1. Suspension footbridge model with reverse profiled cables: (a) elevation; (b) top view; (c) middle transverse bridge frame.
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In order to simplify the analysis, all the transverse bridge frames are assumed to have the same size, and
hence the weight of frame and deck acting on the cables can be considered as equal concentrated loads. All the
cables are stretched by introducing initial distortions to maintain the designed cable sags or cable profiles and
required internal forces, and then the decks can be kept in a horizontal plane.

In the bridge model, stainless steel (Young’s modulus 2.0� 1011N/m2 and density 7850 kg/m3) is chosen for
the transverse bridge frames and support beams, and aluminium (Young’s modulus 6.5� 1010N/m2 and
density 2700 kg/m3) is chosen for the deck units. To reduce the weight of the bridge structure, hollow
rectangular sections and extruded sections shown in Fig. 2 are used for the members of the transverse bridge
frames, support beams and decks. Eight deck units are simply supported on the support beams which span on
the cross members of the adjacent transverse bridge frames. Stainless steel cables are chosen for all the cable
systems and the material properties are the same as those of bridge frames.

2.2. Finite element modelling and numerical analysis

The structural analysis package SAP2000 is adopted to carry out extensive numerical analyses by using
Finite Element method. The proposed footbridge model is modelled as a space frame structure with 3D
prismatic beam (cable) elements. A beam (cable) element has two end nodes and each end node has six degrees
of freedom: three translations along the local axes and three rotations about its axes. The deflection of the
structural model is governed by the displacements of the joints, and different connections, supports and
boundary conditions are simulated by applying corresponding end releases and joint restraints.

In the finite element modelling, bridge deck units are assumed to be simply supported by the supporting
beams and are modelled as 3D beam elements with end releases: the two ends are supposed to have the same
pin connections to the supporting beams and can carry torques and axial forces in order to keep the structure
symmetric about the bridge centre line. The supporting beams are also modelled as 3D beam elements with
end releases (pin connections), but one end cannot carry torque and axial force. Therefore, the axial force and
torque in a supporting beam are only caused by the loads on the supporting beam. For the bridge frame, the
members are modelled as 3D beam elements rigidly connected together at the intersection points. All the joints
on the bridge frames at the two ends of the bridge model are assumed to have fixed joint restraints (i.e. zero
translations and rotations), and therefore these frames will have almost no effect on the structural
performance and vibration properties. The cables are modelled as tension only members having large
deflections by using beam/frame elements. To simulate the flexible behaviour of cables, each cable element is
divided into 20 segments and the moments of inertia of section and torsional constant are modified by a
multiplication factor of 0.01. From structural dynamics principles, the governing equations of the footbridge
can be developed as [10]

½K �fUðtÞg þ ½C�f _UðtÞg þ ½M�f €UðtÞg ¼ fRðtÞg, (1)

where [K] is the stiffness matrix; [C] is damping matrix; [M] is the diagonal mass matrix; {U(t)}, f _UðtÞg and
f €UðtÞg are the displacements, velocities and accelerations of the structure; and {R(t)} is the applied load.

Slender suspension footbridges have large displacements and hence the stiffness matrix is not constant and
the effect of axial forces and large deformation should be considered. The entire structural stiffness is mainly
provided by the cable system and depends significantly on the cable tensions as well as cable profiles. The
Fig. 2. Sections of bridge members: (a) member of bridge frame; (b) supporting beams; (c) deck units.
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tension forces provide load resistances in different directions through the cable profiles and hence affect the
stiffness. When a bridge structure deforms or vibrates under applied loads, the cable profiles deform and these
changes influence the tension forces and hence affect the structural stiffness as well as the dynamic properties.
In general, cables in vertical plane mainly provide force components in vertical and longitudinal directions,
and they produce small lateral force components only when they have lateral deformation. On the other hand,
lateral stiffness can be considerably improved by cables in horizontal plane [9].

In order to investigate the effects of cable configuration and fundamental natural frequency, three bridge
models with different cable configurations are studied in this conceptual study and it is assumed that all the
top, bottom and side cables have the same cross section (diameter) and cable sag. Bridge model A—a
footbridge model with top supporting cables and pre-tensioned bottom reverse profiled cables, the side cables
and side legs of the bridge frames are removed. Bridge model B—a footbridge model with top supporting
cables, and pre-tensioned bottom and side cables, and its fundamental natural frequency in lateral direction
equals to that of bridge model A. Bridge model C—a bridge model which has the same pretension in reverse
profiled bottom cables as bridge model A, but improved by the addition of reverse profiled side cables.

In the following free vibration analysis, the un-damped form of Eq. (1) is used to obtain the natural
frequencies and their corresponding vibration modes. The structural stiffness [K] used here is the one when all
the cables are stretched to keep the designed cable profiles (or cable sags) and the bridge deck is assumed to be
in horizontal plane.

When the suspension footbridge model is subjected to walking dynamic loads, the structural stiffness [K] is
affected by the deformation. To obtain the dynamic response, non-linear direct-integration time history
analysis is carried out by using Hilber–Hughes–Taylor method. Small time step is used to ensure the accuracy
and this time step varies from 0.01 to 0.03 s (less than one fortieth of the period) for walking dynamic load
with different pacing frequencies. Since damping in real structures is very complex and structure dependent,
proportional damping is used. In this proportional damping model, the damping matrix is assumed to be a
linear combination of the stiffness matrix and mass matrix with two defined coefficients [10]. In this conceptual
study, these two coefficients are selected according to the periods (or natural frequencies) and it is supposed
that both the first and second vibration modes in the same type have the same damping ratio.
3. Walking dynamic loads

It’s widely recognized synchronous excitation can be caused by the combination of high density of
pedestrians and low natural frequencies of bridges within the frequency range of pacing frequency. When
synchronization occurs, footbridges resonate near or at the natural frequency within the frequency range of
pacing frequency, and part of pedestrians will change their footfalls to match the vibration. To model the
synchronous walking dynamic loads, the following assumptions are adopted:
(i)
 About 20% of pedestrians participate fully in the synchronization process and generate vertical and
lateral dynamic loads at a pacing frequency coinciding with one of the natural frequencies of the
footbridge. The remaining 80% pedestrians generate only static vertical load on the bridge deck as they
walk with random pacing frequencies and phases.
(ii)
 The force generated by a footfall has components in the vertical, lateral and longitudinal directions. The
vertical component follows the Wheeler’s force–time functions [11] and the lateral component has the
same force function as its vertical component, but the magnitude is only a small portion (4%) [12] of
the vertical component. The longitudinal component is not important for the lateral vibration and is
neglected.
(iii)
 The pedestrian load is uniformly distributed on the whole bridge deck, the load density is set to be
1.5 persons/m2 and the average weight of a person is 700N [11].
Fig. 3 shows the typical vertical force functions [11] from slow walk to fast walk. As the force functions are
frequency dependent, the walking activities can be classified into four types according to their pacing
frequencies and each type of activity covers a range of frequency and have the similar force function but
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different pacing frequency: slow walk (less than 1.8Hz), normal walk (1.8–2.2Hz), brisk walk (2.2–2.7Hz) and
fast walk (greater than 2.7Hz).

Considering the normal walk for example, if the vertical force function of one foot is defined as Fn[t], and
the period and foot contact time are Tn and Tnc (Fig. 4), respectively, then this function has the following
property:

Fn½t� ¼
0; to0 or t4Tnc;

F n½t�; 0ptpTnc:

(
(2)

The continuous vertical force function Fnv(t) and lateral force function Fnl(t) can therefore be expressed
according to the pacing frequency fp or load period Tp (Tp ¼ 1/fp).

F nvðtÞ ¼
X1
k¼0

F n½aðt� kTpÞ�, (3)

FnlðtÞ ¼
X1
k¼0

Fn aðt� 2kTpÞ
� �

� Fn aðt� ð2k þ 1ÞTpÞ
� �� �

, (4)

a ¼ Tn=Tp or a ¼ f p=f n; 1:8 Hzpf po2:2 Hz
� �

, (5)
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Fig. 5. Eccentric loads on bridge deck.
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where a is a time factor, fn and Tn are the pacing frequency and period (fn ¼ 1/Tn) shown in Fig. 4 for
normal walk.

According to the assumptions, the walking dynamic load will consist of three parts: vertical dynamic force
qnv(t), lateral dynamic force qnl(t) and vertical static force qsv(t). In numerical analysis, the static load is
modelled as ramp load in order to reduce the fluctuation of dynamic response at the beginning of time history
analysis. Therefore the walking loads for normal walk can be modelled as

qnvðtÞ ¼ 210FnvðtÞ ðN=m
2Þ, (6a)

qnlðtÞ ¼ 8:4FnlðtÞ ðN=m
2Þ, (6b)

qsvðtÞ ¼
840t=ð10aÞ ðN=m2Þ; 0oto10a;

840 ðN=m2Þ; tX10a:

(
(6c)

The loads caused by the other walking activities with other pacing frequencies can be similarly defined by
following the same procedure.

To make the analysis simple, the pedestrians are assumed to walk eccentrically cross the footbridge, and
hence the walking dynamic loads are distributed only on half the width of the deck (Fig. 5) along the whole
bridge span length.

4. Natural frequencies and vibration modes

Natural frequencies and corresponding vibration modes are important dynamic properties and have
significant effect on the dynamic performance of structures. Suspension bridges always have four main types
of vibration modes: lateral, torsional, vertical and longitudinal modes. A suspension footbridge (with or
without pre-tensioned reverse profiled cables) with shallow cable sag will also have these four types of
vibration modes. However, numerical results [13] show that the lateral modes and torsional modes do not
always appear as pure lateral or torsional vibration modes. Often, they are combined together and form two
types of coupled vibration modes: coupled lateral–torsional modes (LmTn) and coupled torsional–lateral
modes (TmLn), where L and T represent lateral and torsional modes, respectively and m and n are the number
of half-waves. Coupled lateral–torsional vibration modes (Fig. 6) are dominated by the lateral vibration
modes in conjunction with the torsional vibration. When the footbridge structure vibrates with a coupled
lateral–torsional mode, the movement of the deck appears as if it has lateral movement and sways about a
point above the deck. While coupled torsional–lateral modes (Fig. 7) are dominated by torsional vibration
modes, and the deck has lateral movement and sways about a point underneath the bridge deck. Most vertical
vibration modes appear as pure vertical modes, without corresponding lateral or torsional components. The
longitudinal modes are sensitive to the connection between the adjacent bridge frames and disappear from the
first 20 frequencies when pre-tensions are introduced.
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Fig. 6. Coupled lateral–torsional vibration modes: (a) elevation; (b) top view; (c) end view.

Fig. 7. Coupled torsional–lateral vibration modes: (a) elevation; (b) top view; (c) end view.
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For slender footbridges, vibration at low frequency is more important than that at high frequency, as the
fundamental natural frequencies in lateral direction are always low. Vibration modes with low natural
frequencies can also be excited by crowd of walking pedestrians, even when the natural frequencies are out of
the range of normal walk. For example, the lowest frequency of the lateral mode excited on the Millennium
Bridge in London is about 0.48Hz. This frequency coincides with a pacing frequency of 0.96Hz and the
frequency range of normal walk is supposed to vary from 1.6 to 2.4Hz [1].

In order to illustrate the dynamic behaviour of slender footbridges with coupled vibration modes under
walking dynamic loads, the natural frequency corresponding to the first coupled lateral–torsional mode of the
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footbridge model A and bridge model B is set to be 0.75Hz by introducing different tension forces
in the reverse profiled cables. Table 1 shows some of the dynamic properties with relative structural
parameters. Here the longitudinal modes are not listed. These bridge models have a span length of 80m,
cable sags of 1.8m and cable diameters of 120mm. In this table, the mass density M is obtained by dividing
the total structural mass by the span length (80m) and deck width (4m), and the tension force T1, T2

and T3 are the maximum tension forces at the end segment of the top supporting cables, reverse profiled
bottom and side cables, respectively. From this table, it can be seen that when the natural frequency of
the first coupled lateral–torsional mode (L1T1) is set to be the same, the other frequencies of the bridge
model B are much smaller than those of bridge model A. This is because the lateral stiffness of the bridge
model B has been improved by the side reverse profiled cables and the tension forces in the top and bottom
cables required for the same fundamental natural frequency are smaller even though the mass density has
increased.

Since bridge model C can be looked upon as an improved model from bridge model A, its pre-tension force
in the reverse profiled bottom cables is kept as the same as that in bridge model A, while the tension force in
the top supporting cables increases due to the increase of structural weight after the side legs and reverse
profiled side cables have been added. As a result, the natural frequencies corresponding to the coupled
lateral–torsional modes are higher than those of bridge model A (despite a small increase in structural weight),
as the lateral stiffness has been improved by the pre-tensioned side cables. It is also found that the frequencies
of coupled torsional–lateral modes and the first vertical mode decrease slightly while those corresponding to
the higher vertical modes increase a little. This phenomenon implies that the reverse profiled side cables have
only slight effect on the vertical and torsional stiffness. Comparing bridge models C and B, the natural
frequencies of bridge model C are much higher than those of bridge model B. This is because the tension forces
in the cable system of bridge model C are much greater than those of bridge model B, though they have the
same cable configuration and mass density.
Table 1

Vibration properties of different bridge models

Bridge model A B C

Mass density M (kg/m2) 363.80 465.84 465.84

Cable tension

T1 (N) 6,987,428 5,536,132 7,901,332

T2 (N) 3,722,268 1,356,765 3,722,863

T3 (N) — 1,110,712 3,339,126

Coupled lateral–torsional

L1T1 0.7500 0.7500 0.9320

L2T2 1.4585 1.0980 1.5714

L3T3 2.1634 1.5602 2.2925

L4T4 2.8656 2.0340 3.0196

L5T5 3.5654 2.5246 3.7532

L6T6 4.2572 3.0111 4.4778

Coupled torsional–lateral

T1L1 1.1949 0.8982 1.1184

T2L2 1.8718 1.4158 1.8613

T3L3 2.7238 2.0593 2.7181

T4L4 3.5793 2.7023 3.5773

Vertical

V1 1.0943 0.9062 1.0585

V2 1.5151 1.1633 1.5829

V3 2.2866 1.7597 2.3818

V4 3.0239 2.3203 3.1551

V5 3.7785 2.8998 3.9383
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5. Resonant vibration under eccentric walking dynamic loads

When crossing a bridge which is vibrating at a frequency within the range of walking rates, pedestrians
trend to change their pacing frequencies to move in harmony with the bridge vibration. This mechanism leads
to large amplitude synchronous vibration. In other words, the bridge structure resonates at the vibration mode
excited by the walking pedestrians. In general, when crowd walking dynamic loads are distributed uniformly
on the entire bridge deck, the one half-wave coupled lateral–torsional mode (L1T1) and one half-wave vertical
mode (V1) are easy to be excited while the one half-wave coupled torsional–lateral mode (T1L1) is not.
However, when the loads are distributed uniformly only on the half-width of the deck along the whole bridge
length, all the one half-wave modes can possibly be excited.

To illustrate the dynamic response, the lateral and vertical deflections of the intersection point of the cross
member and bridge legs (Point A in Fig. 8) are selected from the middle bridge frame and shown in the
following figures and tables, as the maximum dynamic deflections occur at this location for the one half-wave
vibration modes. In the following numerical analysis, the damping ratios for the first two vibration modes
(such as L1T1 and L2T2, or V1 and V2, and so on) are assumed to be 0.01.

5.1. Resonant vibration of bridge model A

Footbridge structures vibrate at a frequency coinciding with the pacing frequency of walking pedestrians.
When this pacing frequency coincides with one of the natural frequencies of the footbridge, the bridge
structure is supposed to resonate with the corresponding vibration modes.

Fig. 9 shows the lateral and vertical deflections when pedestrians walk across the footbridge at the pacing
frequency of 1.5Hz. It can be seen that the footbridge resonates in the lateral direction as the frequency of
lateral dynamic force generated by the walking pedestrians coincides with the natural frequency of the
footbridge structure; while in the vertical direction, the footbridge vibrates with small amplitude as resonant
vertical vibration is not expected at this pacing frequency. However, the vertical deflection is contributed by
three parts: static deflection under static vertical force, dynamic deflection induced by the dynamic vertical
force and dynamic deflection caused by the resonant lateral vibration [14].

Fig. 10 shows the dynamic response when the vertical mode V1 is excited by pedestrians walking at the
pacing frequency of 1.0943Hz. It can be seen that the footbridge resonates in the vertical direction with large
amplitude, and the lateral vibration consists of two parts: one caused by the lateral dynamic force and the
other induced by the eccentric vertical dynamic force. However, it is found that the vertical dynamic force has
only small contribution to the lateral vibration although eccentric static vertical load can cause lateral
deflection [9]. It seems the effect of eccentric vertical dynamic load on the lateral vibration is different from
that of eccentric static vertical load, and the lateral vibration is mainly induced by the lateral dynamic force.

Fig. 11 shows the dynamic lateral and vertical deflections when pedestrians walk on the half-width of deck
at the pacing frequency of 1.1949Hz (the natural frequency of the first coupled torsional–lateral mode T1L1).
Since the vibration mode T1L1 is predominately torsional mode and is asymmetric about the centre line of the
bridge deck, it is not easy to be excited by crowd walking dynamic loads symmetrically distributed on the
entire deck, but can be excited by eccentric loads. When the footbridge structure resonates in this mode, it is
found that both the lateral and vertical deflections have large amplitudes. The lateral vibration is mainly
Ul

Uv

A

A'

Fig. 8. Deflections and deformed bridge frame.
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caused by the eccentric vertical dynamic force and enhanced by the lateral dynamic force. It can be seen that
the lateral vibration has large constant amplitude but its mean value increases almost linearly with time, and it
seems that the lateral deflection is contributed by both the vertical dynamic force and lateral dynamic force. It
is found that the vertical deflection also has increasing mean value although this increase is very small. The
increasing mean values of vibration in lateral and vertical direction are probably caused by the static load and/
or the non-linearity of geometry.

Table 2 shows the statistics of steady dynamic deflections of an intersection point (Point A in Fig. 8) at the
middle bridge frame (the same in the following tables) when pedestrians walk on half the width of deck at
different pacing frequencies. The maximum and minimum deflections for the entire vibration are not listed
and discussed as they are affected by the initial conditions. In this table, the lateral deflection Ul and vertical
one Uv denote the components of the general deflection U, and this also applies for the other quantities in this
and following tables. Here the static deflections (Ustatic) are produced by the quasi-static dynamic vertical force
(defined by Eq. (6a)) as this dynamic force is the main cause of excitation when the crowd walking dynamic
loads are distributed on the half-width of the bridge deck. Here and in the following tables, the maximum and
minimum steady deflections (Ustdmax and Ustdmin) are the maximum and minimum peak values of the steady
vibrations within a period of 15 s after the vibrations become steady. While for the vibrations with changing
mean values, the maximum and minimum steady deflections are chosen from a typical periodic steady
vibration cycle. The steady dynamic amplitude Austd and mean value Mustd of lateral deflection are calculated
based on their maximum value Ustdmax and minimum one Ustdmin:

Austd ¼ ðU stdmax �U stdminÞ=2
�� ��, (7)
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Fig. 10. Dynamic deflections of bridge model A under eccentric walking loads at pacing frequency of 1.0943Hz: (a) lateral deflection;

(b) vertical deflection.
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Mustd ¼ ðU stdmax þU stdminÞ=2. (8)

The dynamic amplification factor (DAF) of deflections DAFustd is defined as

DAFustd ¼ Austd=U static

�� ��. (9)

From this table, it can be seen that large amplitude lateral vibration can be caused when the coupled
vibration modes are excited by pedestrians walking across the footbridge on half-width of the deck. Resonant
vibration with the coupled lateral–torsional mode is the main reason of excessive lateral vibration. However,
resonant vertical vibration excited by vertical dynamic load does not cause large amplitude lateral vibration
although eccentric vertical load incurs lateral deflection.
5.2. Resonant vibration of bridge model B

When the pre-tensioned side cables are introduced in the footbridge (bridge model B), the lateral stiffness
can be improved, while the vertical stiffness is reduced when the same fundamental natural frequency in the
lateral direction is required to compare the dynamic performance of footbridges with different cable
configurations. This phenomenon has been shown in Table 1 and discussed previously. Due to this reason, the
vibration properties are affected by the pre-tensioned side cables and hence the dynamic performance is
influenced.

Table 3 shows the statistics of the steady dynamic deflections when pedestrians walk along the half-width of
bridge deck with different pacing frequencies. When the first coupled lateral–torsional mode L1T1 is excited by
pedestrians walking at the pacing frequency of 1.5Hz, it is found that the lateral and vertical vibrations are
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Fig. 11. Dynamic deflections of bridge model A under eccentric walking loads at pacing frequency of 1.1949Hz: (a) lateral deflection;

(b) vertical deflection.

Table 2

Dynamic deflections of bridge model A under eccentric walking dynamic loads

Bridge parameter L ¼ 80m; F1 ¼ F2 ¼ 1.8m; D1 ¼ D2 ¼ 120mm

Bridge model A A A

Vibration mode excited L1T1 V1 T1L1

Pacing frequency fp (Hz) 1.5000 1.0943 1.1949

Damping ratio 0.010 0.010 0.010

Displacement U Ul Uv Ul Uv Ul Uv

Static displacement Ustatic (m) 0.00078 �0.00962 0.00078 �0.00962 0.00078 �0.00962

Steady vibration Ustdmax (m) 0.02700 �0.03338 0.00733 0.06541 0.04030 �0.00370

Ustdmin (m) �0.01895 �0.04441 0.00252 �0.14366 0.02021 �0.07600

Austd (m) 0.02297 0.00552 0.00240 0.10454 0.01004 0.03615

Mustd (m) 0.00403 �0.03889 0.00493 �0.03913 0.03025 �0.03985

DAFustd 29.4 0.6 3.1 10.9 12.8 3.8
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similar to those of bridge model A, but the amplitude and DAF of the lateral deflection are much smaller. The
amplitude of the vertical deflection also decreases slightly while the mean value increases significantly, as the
result of decrease of vertical stiffness. However, when the vertical mode V1 and coupled mode T1L1 are
excited, the footbridge structure experiences large vibrations in both lateral and vertical directions. Figs. 12
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Table 3

Dynamic deflections of bridge model B under eccentric walking dynamic loads

Bridge parameter L ¼ 80m; F1 ¼ F2 ¼ F3 ¼ 1.8m; D1 ¼ D2 ¼ D3 ¼ 120mm

Bridge model B B B

Vibration mode excited L1T1 V1 T1L1

Pacing frequency fp (Hz) 1.5000 0.9062 0.8982

Damping ratio 0.010 0.010 0.010

Displacement U Ul Uv Ul Uv Ul Uv

Static displacement Ustatic (m) 0.00078 �0.01080 0.00078 �0.01080 0.00078 �0.01080

Steady vibration Ustdmax (m) 0.01399 �0.03827 0.04300 0.09294 0.02183 0.07244

Ustdmin (m) �0.00538 �0.04886 �0.01190 �0.17985 �0.00704 �0.15884

Austd (m) 0.00969 0.00530 0.02745 0.13639 0.01444 0.11564

Mustd (m) 0.00430 �0.04357 0.01555 �0.04346 0.00740 �0.04320

DAFustd 12.4 0.5 35.1 12.6 18.4 10.7
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Fig. 12. Lateral deflections of bridge model B under eccentric walking loads at pacing frequency of 0.9062Hz.
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Fig. 13. Lateral deflections of bridge model B under eccentric walking loads at pacing frequency of 0.8982Hz.
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and 13 show the lateral deflections under eccentric walking loads with different pacing frequencies and it is
found that both these lateral deflections have increasing mean values and the lateral deflections are mainly
caused by the vertical dynamic forces. The similarity of resonant vibration feature under eccentric dynamic
loads in the modes V1 and T1L1 is probably due to their close natural frequencies.
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Table 4

Dynamic deflections of bridge model C under eccentric walking dynamic loads

Bridge parameter L ¼ 80m; F1 ¼ F2 ¼ F3 ¼ 1.8m; D1 ¼ D2 ¼ D3 ¼ 120mm

Bridge model C C C

Vibration mode excited L1T1 V1 T1L1

Pacing frequency fp (Hz) 1.8640 1.0585 1.1184

Damping ratio 0.010 0.010 0.010

Displacement U Ul Uv Ul Uv Ul Uv

Static displacement Ustatic (m) 0.00034 �0.00773 0.00034 �0.00773 0.00034 �0.00773

Steady vibration Ustdmax (m) 0.01111 �0.02529 0.00530 0.05503 0.02370 �0.00737

Ustdmin (m) �0.00786 �0.03440 �0.00107 �0.11715 �0.00256 �0.05612

Austd (m) 0.00948 0.00455 0.00319 0.08609 0.01313 0.02437

Mustd (m) 0.00162 �0.02985 0.00211 �0.03106 0.01057 �0.03175

DAFustd 28.2 0.6 9.5 11.1 39.1 3.2
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5.3. Resonant vibration of bridge model C

As the bridge model is developed from bridge model A, the lateral stiffness is significantly improved by the
pre-tensioned side cables while the vertical stiffness just changes slightly. This can be seen from the change of
natural frequencies in Table 1 and the static deflections in Table 4. Table 4 shows the statistics of the steady
vibrations when different vibration modes are excited by pedestrians walking eccentrically on the half-width of
the deck at different pacing frequencies. It is found that the dynamic performance of bridge model C is similar
to that of bridge model A. When the footbridge resonates in the coupled mode L1T1, the lateral vibration is
mainly induced by the lateral dynamic force. Though the dynamic amplitude is much smaller than that of
bridge model A, the DAF is much larger as the static deflection is smaller. When the footbridge resonates in
the vertical mode V1, the lateral vibration is mainly induced by the lateral dynamic force. While when the
coupled mode T1L1 is excited, it is found that the lateral vibration is mainly caused by the eccentric vertical
dynamic force, but its amplitude is much larger although the amplitude of vertical vibration decreases. This
phenomenon indicates that the vibration in coupled mode is much complex than those in pure lateral or
torsional modes, and it is not only affected by the natural frequency and mode shape, but affected by other
factor such as the ratio of lateral component to the vertical one. For example, it is found that the ratio of
lateral component to vertical one of coupled mode T1L1 is 0.12238 for bridge model A, 0.47099 for bridge
model B and 0.27587 for bridge model C. It seems that higher amplitude lateral vibration would accompany
the vertical one for a coupled torsional–lateral mode. This is probably one reason why large amplitude lateral
vibration still occurs even when the structural stiffness has been improved and the amplitude of vertical
vibration has been reduced.

6. Conclusion and discussion

Suspension footbridge is an important and popular structural form of modern footbridges. Due to the new
technology and application of light weight and high strength materials, modern suspension footbridges are
often designed and constructed slender and flexible with low mass and low stiffness. Some can also be designed
as ribbon bridges with shallow cable profiles to satisfy different aesthetic requirements. However, such slender
footbridges are always prone to vibration induced by pedestrians and have risk of suffering serious vibration
serviceability problems.

In this conceptual study, a suspension footbridge model with reverse profiled cables is proposed to
investigate the vibration characteristics of shallow suspension pedestrian bridge structures. This paper
concerns the vibration of slender suspension footbridges under eccentrically distributed walking dynamic
loads. It is found that large amplitude lateral vibration is mainly caused by the resonant vibration in coupled
vibration modes. When the first coupled lateral–torsional mode is excited, the large amplitude lateral vibration
is induced by the lateral dynamic force; while when the first coupled torsional–lateral mode is excited, the
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excessive lateral vibration with increasing mean value is mainly caused by the vertical dynamic force and
enhanced by the lateral dynamic force. When the first vertical mode is excited, the amplitude of lateral
vibration is quite small and it is mainly caused lateral dynamic force.

It is known that pedestrians are much more sensitive to low-frequency lateral vibration when walking or
running than to the vertical vibration. The acceptable amplitudes of acceleration and deflection in vertical
direction are five times of those in the lateral direction [1]. On the other hand, suspension footbridges always
have much weaker structural stiffness in the lateral direction than in the vertical direction, and they are in
danger of suffering excessive lateral vibrations. Therefore, vibration control in the lateral direction is
important for the serviceability of slender suspension footbridges. In real footbridge situation, the resonant
lateral vibration induced by synchronous lateral excitation is the most important source for lateral vibration
serviceability problem as it is quite normal that pedestrians walk across a footbridge on whole bridge deck and
the lateral or coupled lateral–torsional modes are easily excited. However, it is also common that there are
always eccentric loads existing on the bridge deck due to different reasons such as different weights of people
or pedestrians walking eccentrically on the deck. Since this lateral vibration is induced by eccentrically
distributed vertical load, it is independent of the phases of footfalls and may make more pedestrians be aware
of the lateral vibration and hence trigger the synchronous lateral excitation. This can happen more easily on
slender footbridges which have nearly integer frequency ratios [15] between vertical and lateral natural
frequencies, as it is probably convenient for pedestrians to adjust their footfalls to the pacing frequencies
coinciding with the bridge vibrating at its lateral natural frequency.

It seems that for slender footbridge structures, it is important to improve the lateral stiffness and hence to
reduce the level of lateral vibration caused by synchronous lateral excitation. It is also important to suppress
the lateral vibration induced by eccentric loads as this vibration could also be a source for lateral vibration
serviceability problem, and it also provides an opportunity to trigger synchronous lateral excitation.
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